13,955 research outputs found

    Evolution of Intermediate-Mass Black Hole X-Ray Binaries

    Full text link
    The majority of the ultraluminous X-ray sources (ULXs) in external galaxies are believed to be accreting black holes in binary systems; some of the black holes could be as massive as \sim 100-1000 \ms. We have performed evolution calculations for intermediate-mass black hole X-ray binaries, assuming they are formed in dense star clusters via tidal capture. The results are compared with those for stellar-mass black holes X-ray binaries. We find that these two types of black holes may have similar companion stars and binary orbits if observed as ULXs. However, intermediate-mass black holes seem to be favored in explaining the most luminous ULXs. We also discuss the possibilities of transient behavior and beamed emission in the evolution of these binary systems.Comment: 11 pages, 3 figures. Accepted for publication in ApJ

    Casimir pistons with hybrid boundary conditions

    Full text link
    The Casimir effect giving rise to an attractive or repulsive force between the configuration boundaries that confine the massless scalar field is reexamined for one to three-dimensional pistons in this paper. Especially, we consider Casimir pistons with hybrid boundary conditions, where the boundary condition on the piston is Neumann and those on other surfaces are Dirichlet. We show that the Casimir force on the piston is always repulsive, in contrast with the same problem where the boundary conditions are Dirichlet on all surfaces.Comment: 8 pages, 4 figures,references added, minor typos correcte

    Low-lying states in 30^{30}Mg: a beyond relativistic mean-field investigation

    Full text link
    The recently developed model of three-dimensional angular momentum projection plus generator coordinate method on top of triaxial relativistic mean-field states has been applied to study the low-lying states of 30^{30}Mg. The effects of triaxiality on the low-energy spectra and E0 and E2 transitions are examined.Comment: 6 pages, 3 figures, 1 table, talk presented at the 17th nuclear physics conference "Marie and Pierre Curie" Kazimierz Dolny, 22-26th September 2010, Polan

    Rapid structural change in low-lying states of neutron-rich Sr and Zr isotopes

    Full text link
    The rapid structural change in low-lying collective excitation states of neutron-rich Sr and Zr isotopes is tudied by solving a five-dimensional collective Hamiltonian with parameters determined by both relativistic mean-field and non-relativistic Skyrme-Hartree-Fock calculations using the PC-PK1 and SLy4 forces respectively. Pair correlations are treated in BCS method with either a separable pairing force or a density-dependent zero-range force. The isotope shifts, excitation energies, electric monopole and quadrupole transition strengths are calculated and compared with corresponding experimental data. The calculated results with both the PC-PK1 and SLy4 forces exhibit a picture of spherical-oblate-prolate shape transition in neutron-rich Sr and Zr isotopes. Compared with the experimental data, the PC-PK1 (or SLy4) force predicts a more moderate (or dramatic) change in most of the collective properties around N=60. The underlying microscopic mechanism responsible for the rapid transition is discussed.Comment: 10 pages (twocolumn), 10 figure
    • …
    corecore